meta-analysis

2020 Meta-Analysis: Slow Breathing Improves A Variety of Behavioral and Physiological Outcomes

Key Points

  • Across 58 studies and 2,485 patients, heart rate variability biofeedback (HRVB) and slow breathing improve a wide range of behavioral and physiological outcomes.

  • These methods provide a simple, safe, and effective complementary therapy that could be useful in a wide variety of settings.

  • Slow breathing (without biofeedback) is likely to be enough, requiring little more than a cellphone application to get started.

The Breathing Diabetic Summary

A hallmark of slow breathing is that it increases heart rate variability (HRV). It does this by increasing respiratory sinus arrhythmia (RSA), which synchronizes your heart rate with your breathing. When they match, your heart rate increases while you inhale and it decreases while you exhale.

Thus, RSA enhances the “peaks and troughs” of heart rate with each breath, which increases HRV. Because HRV is a robust indicator of overall health and wellness, this is one way in which slow breathing is so powerful. So much so, in fact, that HRV biofeedback (or HRVB) has become extremely popular to help with a variety of problems. 

With HRVB, a person’s “perfect” breathing rate is determined—that is, one that maximizes HRV. And because increases in RSA and HRV are driven by increases in the calming parasympathetic branch of the nervous system, this can reduce negative stress and increase overall resiliency. This has wide-reaching positive benefits.

We’ve covered many of them before. But here are some of the general benefits:

  • Reduced blood pressure.

  • Reduced stress and anxiety.

  • Improved emotional control.

  • Enhanced cognitive function.

  • Better cardio-autonomic function.

  • Improved gas exchange in the lungs.

In this meta-analysis, the authors performed an extensive literature review to examine these benefits of HRVB from a broader statistical perspective. They included papers spanning a wide range of settings, measuring a wide range of outcomes.

Note that, although HRVB sounds fancy (and it can be), many of the benefits are achieved by simply breathing at a rate of about 5-6 breaths per minute.

Therefore, this meta-analysis also included studies that used 6 breaths per minute because:

it is possible that simply doing paced breathing at about six breaths per minute would have the same salutary effects as breathing more exactly at resonance frequency. […] This can easily be taught by following a computer-generated pacing signal or a clock.

From a practical perspective, this might be the most important aspect of this meta-analysis.

After starting with more than 1,500 papers, they ended up with 58 studies having a total of 2,485 patients.

Their statistical analysis of all these studies revealed that HRVB and slow breathing both significantly improve many aspects of health and wellness.

The greatest benefits were for:

  • Athletic performance

  • Artistic performance

  • Depression

  • Gastrointestinal problems

  • Anxiety and anger

  • Respiratory disorders

  • Systolic blood pressure

  • Pain

Smaller, but still meaningful, benefits were found for:

  • Self-reported stress

  • Quality of life

  • Diastolic blood pressure

  • PTSD

  • General energy

  • Sleep

Interestingly, I would have expected several items on the second list to be on the first. But that’s why meta-analyses like this are so important : ) Also, note that measures like “self-reported stress” are harder to quantify. The authors even mention that these results might be the result of how the questionnaires were given.

In any case, the overall results of this meta-analysis are quite exceptional: HRVB and slow breathing both have wide-ranging benefits for overall health and wellness.

These two sentences from the paper sum it up better than I ever could:

These results suggest that HRVB might be a useful addition to the skill sets of clinicians working in a variety of settings, including mental health, behavioral medicine, sports psychology, and education. The method is easy to learn and can easily be used along with other forms of intervention, with rare side effects.

Abstract

We performed a systematic and meta analytic review of heart rate variability biofeedback (HRVB) for various symptoms and human functioning. We analyzed all problems addressed by HRVB and all outcome measures in all studies, whether or not relevant to the studied population, among randomly controlled studies. Targets included various biological and psychological problems and issues with athletic, cognitive, and artistic performance. Our initial review yielded 1868 papers, from which 58 met inclusion criteria. A significant small to moderate effect size was found favoring HRVB, which does not differ from that of other effective treatments. With a small number of studies for each, HRVB has the largest effect sizes for anxiety, depression, anger and athletic/artistic performance and the smallest effect sizes on PTSD, sleep and quality of life. We found no significant differences for number of treatment sessions or weeks between pretest and post-test, whether the outcome measure was targeted to the population, or year of publication. Effect sizes are larger in comparison to inactive than active control conditions although significant for both. HRVB improves symptoms and functioning in many areas, both in the normal and pathological ranges. It appears useful as a complementary treatment. Further research is needed to confirm its efficacy for particular applications.

 

 

Journal Reference:

Lehrer, P., Kaur, K., Sharma, A., Shah, K., Huseby, R., Bhavsar, J., & Zhang, Y. (2020). Heart Rate Variability Biofeedback Improves Emotional and Physical Health and Performance: A Systematic Review and Meta Analysis. Applied Psychophysiology and Biofeedback, 45(3), 109–129. https://doi.org/10.1007/s10484-020-09466-z

 

Meta-Analysis: Slow Breathing Reduces Systolic Blood Pressure by 5.62 mmHg

Chadda_et_al-2019_WTG.png
 

Key Points

  • Diabetics are at an increased risk of hypertension and its negative cardiovascular outcomes

  • Slow breathing reduces systolic blood pressure by 5.62 mmHg and diastolic blood pressure by 2.67 mmHg

  • Slow breathing is a simple way to reduce blood pressure and potentially improve cardiovascular outcomes

The Breathing Diabetic Summary

Hypertension is a significant risk factor for cardiovascular disease, which is the leading cause of death in the U.S. For instance, if systolic blood pressure rises from 115 mmHg to 135 mmHg, your risk of cardiovascular disease doubles.

People with diabetes are also much more likely to develop hypertension. Anywhere from 40 to 80% of diabetics have hypertension, a somewhat somber statistic. Moreover, I am writing this in April 2020 during the COVID-19 pandemic. Studies are revealing that hypertension is correlated with more severe complications.

All of this is to say that reducing blood pressure is more important than ever. There are several medications and lifestyle changes available; however, compliance with these approaches are often low. Therefore, alternative therapies are needed. One such treatment is slow breathing.

 

Slow Breathing and Hypertension

Slow breathing has consistently been shown to reduce blood pressure. In particular, a device called RESPeRATE (which is FDA approved), which slowly reduces breathing rate down to below ten breaths per minute, has been examined extensively. The American Heart Association has even given device-guided slow breathing a “class IIA” rating for reducing blood pressure.  

This meta-analysis provides a concise yet comprehensive summary of studies that have examined slow breathing and hypertension. Their strict search criteria and thorough review of the available randomized controlled trials (RCTs) make this the most robust meta-analysis of slow breathing and blood pressure published to date. 

 

Study Inclusion and Strict Search Criteria

The authors searched several public databases (e.g., Web of Science, MEDLINE) since their inception until mid-2015. They used a combination of search terms like “hypertension OR prehypertension” and “slow breathing OR device-guided breathing” to identify papers relevant to the meta-analysis.

In the identified papers, slow breathing was defined as anything below ten breaths per minute. The subjects had to perform slow breathing at least three times a week for at least 5 minutes each session. They included studies of people with both hypertension and prehypertension. The follow-up period had to be at least 4 weeks and changes in blood pressure had to be reported. They excluded studies of healthy subjects without baseline hypertension or prehypertension

 

Selecting Relevant Studies and Publication Bias

The authors started with 1,984 studies, but only 17 met their criteria for inclusion in the meta-analysis. Although meta-analyses are some of my favorites, there are caveats that we need to mention for this one.

Of the 17 studies selected, five were abstracts only. Additionally, only two had slow breathing without a device. The other fifteen were device-guided slow breathing using the RESPeRATE, and the maker of the device sponsored six of these. Thus, there was a high risk of publication bias with these studies.

 

Slow Breathing Significantly Reduces Blood Pressure

Despite these limitations, the collective results were impressive. The average decrease in systolic blood pressure (SBP) across all seventeen studies was 5.62 mmHg. The two non-device slow breathing studies had an even more significant drop of 7.69 mmHg. For diastolic blood pressure, the mean decrease was 2.67 mmHg for the device-guided slow breathing.  

 

Longer Practice Leads to Better Results

They also examined how the intensity of the slow breathing practice affected results—the conclusion: the longer subjects practiced, the greater their reduction in blood pressure. For example, for slow breathing <100 min a week, the decrease in SBP was 3.01 mmHg, for 100-200 min, it was 6.44 mmHg, and for >200 min, it was 14.00 mmHg.  

 

Reduced Blood Pressure Reduces Risk of Death

The significance of these findings is that modest reductions in blood pressure lower the chances of strokes, coronary events, heart failure, cardiovascular deaths, and total deaths. This is especially important for diabetics who are at higher risk of developing hypertension and heart disease.

Moreover, the improvements from slow breathing were similar to those seen with antihypertensive medications. Those medications have been shown to improve long-term outcomes in hypertensive and prehypertensive patients. Therefore, slow breathing could potentially provide similar positive results if practiced consistently over a long period.

 

Slow Breathing is Free and Has No Side Effects

Finally, slow breathing is free, easy to perform, and does not have any side effects. Moreover, the blood-pressure-lowering effects of slow breathing are far-reaching. For example, slow breathing helps with stress, anxiety, and depression, all of which will also help reduce blood pressure.

 

A Recap of the Main Points 

In summary, slow breathing reduces systolic blood pressure by 5.62 mmHg and diastolic blood pressure by 2.67 mmHg. The more time you practice per week, the greater the blood pressure reductions.  Slow breathing also lowers blood pressure by helping with anxiety, stress, and depression. And by lowering your blood pressure, you reduce the risk of many cardiovascular problems, like stroke or heart disease.

To begin, try breathing at six breaths per minute (4 sec inhale, 6 sec exhale) for five minutes a day and see how you feel. 

 

Abstract

OBJECTIVES: Interest is increasing in nonpharmacological interventions to treat blood pressure in hypertensive and prehypertensive patients at low cardiac risk. This meta-analysis of randomized controlled trials assesses the impact of device-guided and non-device-guided (pranayama) slow breathing on blood pressure reduction in these patient populations.

METHODS: We searched PubMed, EMBASE, CINAHL, Cochrane CENTRAL, Cochrane Database of Systematic Reviews, Web of Science, BIOSIS (Biological Abstracts) Citation Index and Alt HealthWatch for studies meeting these inclusion criteria: randomized controlled trial or first phase of a randomized cross-over study; subjects with hypertension, prehypertension or on antihypertensive medication; intervention consisting of slow breathing at ≤10 breaths/minute for ≥5 min on ≥3 days/week; total intervention duration of ≥4 weeks; follow-up for ≥4 weeks; and a control group. Data were extracted by two authors independently, the Cochrane Risk of Bias Tool assessed bias risk, and data were pooled using the DerSimonian and Laird random effects model. Main outcomes included changes in systolic (SBP) and/or diastolic blood pressure (DBP), heart rate (HR), and/or decreased antihypertensive medication.

RESULTS: Of 103 citations eligible for full-text review, 17 studies were included in the meta-analysis. Overall, slow breathing decreased SBP by -5.62 mmHg [-7.86, -3.38] and DBP by -2.97 mmHg [-4.28, -1.66]. Heterogeneity was high for all analyses.

CONCLUSIONS: Slow breathing showed a modest reduction in blood pressure. It may be a reasonable first treatment for low-risk hypertensive and prehypertensive patients who are reluctant to start medication.

 

Journal Reference:

Chaddha A, Modaff D, Hooper-Lane C, Feldstein DA.  Device and non-device-guided slow breathing to reduce blood pressure: A systematic review and meta-analysis.  Complement Ther Med. 2019;45:179-184. doi: 10.1016/j.ctim.2019.03.005.